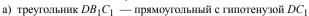
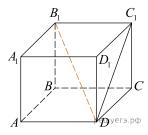
1. Выберите выражение, значение которого является отрицательным числом:


a)
$$\sin \frac{\pi}{12}$$

6)
$$\cos\left(-\frac{\pi}{4}\right)$$

B)
$$\log_7 \sqrt{7}$$

$$\Gamma$$
) $tg \frac{3\pi}{4}$


2. На рисунке изображен куб $ABCDA_1B_1C_1D_1$,в котором проведены диагональ B_1D и диагональ боковой грани DC_1 . Из перечисленных утверждений выберите верное:

б) треугольник
$$DB_1C_1$$
 — прямоугольный с гипотенузой DB_1

в) треугольник
$$DB_1C_1$$
 — равнобедренный с основанием DB_1

г) треугольник
$$DB_1C_1$$
 — равнобедренный с основанием C_1B_1

3. Вычислите: $\arcsin \frac{\sqrt{2}}{2} + \operatorname{arctg} 0 - \operatorname{arccos} \frac{1}{2}$.

4. Решите уравнение $10^{2x} = 2^x \cdot 5^x$.

5. Сравните значения выражений $\log \sqrt[3]{5} \left(\frac{\sqrt[6]{5}}{125} \right)$ и $-64^{0.5}$.

6. Основание пирамиды — квадрат со стороной 4 см. Высота пирамиды равна 3 см и проходит через одну из вершин основания. Найдите площадь полной поверхности пирамиды.

7. Решите уравнение $\sqrt{x-2} = 15 - 2\sqrt[4]{x-2}$.

8. Решите неравенство $5^{\lg x} - 3^{\lg x} < 5\frac{1}{3} \cdot 3^{\frac{1}{2}\lg x} \cdot 5^{\frac{1}{2}(\lg x - 2)}$.

9. Решите уравнение $\frac{\sin x - \sin 3x}{1 + \cos x} = 0$.

10. Высота конуса равна 3 см, угол между высотой и образующей равен 30°. В этот конус вписан другой конус так, что его вершина совпадает с центром основания первого конуса, а соответствующие образующие взаимно перпендикулярны. Найдите объем вписанного конуса.